Quantum technologies EDF-2024-LS-RA-DIS-QUANT-STEP
Non-thematic research actions targeting disruptive technologies for defence (EDF-2024-LS-RA-DIS)
The proposals must address at least one of the following technological domains:
Quantum sensing technologies for PNT
The proposals should address quantum sensing technologies with the potential to improve PNT capabilities, such as high performances atomic clocks, quantum inertial sensors and gravimeters, and solid-state quantum vector magnetometers. Specific enabling technologies for improving size, weight and power (SWaP), to increase efficiency and/or ruggedness while lowering the overall footprint, should be addressed.
Quantum technologies for optronics and RF sensing
The proposals should address quantum technologies with a potential to improve imaging and optronic sensors by exploiting quantum properties such as superposition, tunnelling and entanglement. In particular, technologies exploiting single photon detection and its processing for seeing behind obstacles in non-line-of-sight configuration and/or in degraded visual environment, such as smoke and dust fog, should be addressed.
The proposals should also address quantum technologies with a potential to improve RF sensing and electronic warfare, such as ensembles of atoms in Rydberg state or superconducting quantum devices exploiting interference effects as well as colour centres in crystals or other quantum approaches.
Quantum technologies and/or quantum-resistant cryptography for secure communications
The proposals should address technologies with a potential to improve secure communications (including for multi-domain operations), such as quantum information networks, quantum cryptography and quantum random number generators, and/or quantum-resistant cryptography (post-quantum cryptography, PQC).
For quantum information networks, techniques for using different transmission media such as fibre optics, free-space or water, including interface between different networks, may be addressed. Technologies to enable long-distance communication, such as quantum memories and entanglement swapping capabilities for quantum repeaters or high-precision pointing and optics for free-space quantum communications, should be covered.
For quantum cryptography, a number of challenges remain to be addressed, such as Quantum Key Distribution (QKD) as cryptographic solutions, standardisation of quantum cryptographic protocols and interfaces, interoperability with other technologies (e.g., PQC), security certification of physical hardware border-node between quantum network domains, better SWaP and cost (SWaP-C) properties of the different quantum components (photodetectors, lasers, attenuators, modulators, etc.), connectivity and interfaces with classical devices needed for encryption/decryption of the sensitive data and for the management of the keys once generated such as Key Management Systems (KMS) and encryptors and development of photonic materials platforms for large scale integration.
For quantum random number generators, challenges to be addressed include the need to increase the bit rate, the improvement of the form factor, miniaturise the devices, and extend the operational range.
For quantum-resistant cryptography, several algorithms and approaches such as lattice-based, multivariate, hash-based and code-based cryptography may be addressed, as well as crypto-agility mechanisms. Challenges to be addressed include standardisation and integration or hybridisation between quantum and non-quantum algorithms. The combination with quantum cryptography and quantum networks may be covered.
Benyújtási határidő: 2024. 11. 05.
Részletes felhívás linkje: ITT
A felhívással kapcsolatban a Pályázati Irodában tájékoztatást nyújt: Dr. Nagy Gabriella